Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells

Author:

Afelik Solomon1,Qu Xiaoling1,Hasrouni Edy1,Bukys Michael A.1,Deering Tye2,Nieuwoudt Stephan1,Rogers William1,MacDonald Raymond J.2,Jensen Jan1

Affiliation:

1. Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.

2. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 76390, USA.

Abstract

Early pancreatic morphogenesis is characterized by the transformation of an uncommitted pool of pancreatic progenitor cells into a branched pancreatic epithelium that consists of ‘tip’ and ‘trunk’ domains. These domains have distinct molecular signatures and differentiate into distinct pancreatic cell lineages. Cells at the branched tips of the epithelium develop into acinar cells, whereas cells in the trunk subcompartment differentiate into endocrine and duct cells. Recent genetic analyses have highlighted the role of key transcriptional regulators in the specification of these subcompartments. Here, we analyzed in mice the role of Notch signaling in the patterning of multipotent pancreatic progenitor cells through mosaic overexpression of a Notch signaling antagonist, dominant-negative mastermind-like 1, resulting in a mixture of wild-type and Notch-suppressed pancreatic progenitor cells. We find that attenuation of Notch signaling has pronounced patterning effects on multipotent pancreatic progenitor cells prior to terminal differentiation. Relative to the wild-type cells, the Notch-suppressed cells lose trunk marker genes and gain expression of tip marker genes. The Notch-suppressed cells subsequently differentiate into acinar cells, whereas duct and endocrine populations are formed predominantly from the wild-type cells. Mechanistically, these observations could be explained by a requirement of Notch for the expression of the trunk determination gene Nkx6.1. This was supported by the finding of direct binding of RBP-jκ to the Nkx6.1 proximal promoter.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3