Identification and characterization of subpopulations in undifferentiated ES cell culture

Author:

Toyooka Yayoi12,Shimosato Daisuke13,Murakami Kazuhiro1,Takahashi Kadue1,Niwa Hitoshi13

Affiliation:

1. Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chu-o-ku, Kobe, Hyogo 650-0047,Japan.

2. Sir William Dunn School of Pathology, University of Oxford, South Parks Road,Oxford OX1 3RE, UK.

3. Laboratory for Development and Regenerative Medicine, Kobe University Graduate, School of Medicine, 7-5-1 Kusunokicho, Chu-o-ku, Kobe, Hyogo 650-0017, Japan.

Abstract

Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1+/Oct3/4+ cells and Rex1-/Oct3/4+ cells. The Rex1-/Oct3/4+ and Rex1+/Oct3/4+ populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1+/Oct3/4+ cells and Rex1-/Oct3/4+ cells have characteristics similar to those of ICM and early-PrE cells, Rex1+/Oct3/4+ cells predominantly differentiated into primitive ectoderm and contributed to chimera formation,whereas Rex1-/Oct3/4+ cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3