Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2

Author:

Acquaviva Fabio1,De Biase Irene1,Nezi Luigi1,Ruggiero Giuseppina1,Tatangelo Fabiana2,Pisano Carmela3,Monticelli Antonella1,Garbi Corrado1,Acquaviva Angela Maria1,Cocozza Sergio1

Affiliation:

1. Dipartimento di Biologia e Patologia Cellulare e Molecolare, Via S. Pansini 5, Istituto di Endocrinologia ed Oncologia Sperimentale Centro Nazionale delle Ricerche, Università `Federico II', Napoli, Italy

2. Unità Operativa Complessa di Anatomia Patologica, Istituto Nazionale Tumori, Via M. Semmola, 80131 Napoli, Italy

3. Unità Operativa Complessa di Oncologia Medica B, Istituto Nazionale Tumori, Via M. Semmola, 80131 Napoli, Italy

Abstract

Friedreich's ataxia is a recessive neurodegenerative disease due to insufficient expression of the mitochondrial protein frataxin. Although it has been shown that frataxin is involved in the control of intracellular iron metabolism, by interfering with the mitochondrial biosynthesis of proteins with iron/sulphur (Fe/S) clusters its role has not been well established. We studied frataxin protein and mRNA expression and localisation during cellular differentiation. We used the human colon adenocarcinoma cell line Caco-2, as it is considered a good model for intestinal epithelial differentiation and the study of intestinal iron metabolism. Here we report that the protein, but not the mRNA frataxin levels, increase during the enterocyte-like differentiation of Caco-2 cells, as well as in in-vivo-differentiated enterocytes at the upper half of the crypt-villus axis. Furthermore, subcellular fractionation and double immunostaining, followed by confocal analysis, reveal that frataxin localisation changes during Caco-2 cell differentiation. In particular, we found an extramitochondrial localisation of frataxin in differentiated cells. Finally, we demonstrate a physical interaction between extramitochondrial frataxin and IscU1, a cytoplasmic isoform of the human Fe/S cluster assembly machinery. Based on our data, we postulate that frataxin could be involved in the biosynthesis of iron-sulphur proteins not only within the mitochondria, but also in the extramitochondrial compartment. These findings might be of relevance for the understanding of both the pathogenesis of Friedreich's ataxia and the basic mechanism of Fe/S cluster biosynthesis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3