Rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase

Author:

Senior A.E.1,Nadanaciva S.1,Weber J.1

Affiliation:

1. Department of Biochemistry, University of Rochester Medical Center, Rochester, NY 14642, USA. alan_senior@urmc.rochester.edu

Abstract

The rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase is of the order of 10(11)-fold. We present a cyclic enzyme mechanism for the reaction, relate it to known F(1) X-ray structure and speculate on the linkage between enzyme reaction intermediates and subunit rotation. Next, we describe five factors known to be important in the Escherichia coli enzyme for the rate acceleration. First, the provision of substrate binding energy by residues lining the catalytic site is substantial; beta-Lys155 and beta-Arg182 are specific examples, both of which differentially support substrate MgATP versus product MgADP binding. Second, octahedral coordination of the Mg(2+) in MgATP is crucial for both catalysis and catalytic site asymmetry. The residues involved are beta-Thr156, beta-Glu185 and beta-Asp242. Third, there is stabilization of a pentacoordinate phosphorus catalytic transition state by residues beta-Lys155, beta-Arg182 and alpha-Arg376. Fourth, residue beta-Glu181 binds the substrate water and stabilizes the catalytic transition state. Fifth, there is strong positive catalytic cooperativity, with binding of MgATP at all three sites yielding the maximum rate (V(max)); the molecular basis of this factor remains to be elucidated.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3