The Structure and Biosynthesis of Epidermal Growth Factor Precursor

Author:

SCOTT J.1,PATTERSON S.1,RALL L.2,BELL G. I.2,CRAWFORD R.3,PENSCHOW J.3,NIALL H.3,COGHLAN J.3

Affiliation:

1. MRC, Clinical Research Centre, Harrow, U.K.

2. Chiron Corporation, 4560 Horton Street, Emeryville, California 94608, U.S.A.

3. Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

SUMMARY The structure of mouse submaxillary gland epidermal growth factor (EGF) precursor has been deduced from complementary DNAs. The mRNA is approximately 4800 bases and predicts prepro EGF to be a protein of 1217 amino acid residues (133×10 Mr). EGF (53 amino acid residues) is flanked by polypeptides of 188 and 976 residues at its carboxy and amino termini, respectively. The amino terminus of the precursor contains seven cysteine-rich peptides that resemble EGF. Towards the carboxy terminus is a 20-residue hydrophobic membrane spanning domain. The mid portion of the EGF precursor shares a 33 % homology with the low density lipoprotein receptor, which extends over 400 amino acid residues. These features suggest that EGF precursor could function as a membrane-bound receptor. RNA dot-blot analysis and in situ hybridization show EGF mRNA to be abundant in the submaxillary gland, kidney and incisor tooth buds. Lower EGF mRNA levels were found in the lactating breast, pancreas, small intestine, ovary, spleen, lung, pituitary and liver. In the kidney EGF mRNA was most abundant in the distal convoluted tubules. Analysis of EGF precursor biosynthesis in organ culture of the submaxillary gland and kidney showed differential processing of the precursor in the two tissues. In the submaxillary gland immunoreactive low molecular weight EGF was produced, but in the kidney the high molecular weight precursor was not processed. In the distal convoluted tubule of the kidney EGF precursor may act as a receptor that is involved in ion transport.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3