Endocytosis in proliferating, quiescent and terminally differentiated cells

Author:

Hinze Claudia1,Boucrot Emmanuel12ORCID

Affiliation:

1. Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK

2. Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London WC1E 7HX, UK

Abstract

ABSTRACT Endocytosis mediates nutrient uptake, receptor internalization and the regulation of cell signaling. It is also hijacked by many bacteria, viruses and toxins to mediate their cellular entry. Several endocytic routes exist in parallel, fulfilling different functions. Most studies on endocytosis have used transformed cells in culture. However, as the majority of cells in an adult body have exited the cell cycle, our understanding is biased towards proliferating cells. Here, we review the evidence for the different pathways of endocytosis not only in dividing, but also in quiescent, senescent and terminally differentiated cells. During mitosis, residual endocytosis is dedicated to the internalization of caveolae and specific receptors. In non-dividing cells, clathrin-mediated endocytosis (CME) functions, but the activity of alternative processes, such as caveolae, macropinocytosis and clathrin-independent routes, vary widely depending on cell types and functions. Endocytosis supports the quiescent state by either upregulating cell cycle arrest pathways or downregulating mitogen-induced signaling, thereby inhibiting cell proliferation. Endocytosis in terminally differentiated cells, such as skeletal muscles, adipocytes, kidney podocytes and neurons, supports tissue-specific functions. Finally, uptake is downregulated in senescent cells, making them insensitive to proliferative stimuli by growth factors. Future studies should reveal the molecular basis for the differences in activities between the different cell states.

Funder

British Heart Foundation

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3