Maximum velocity and leg-specific ground reaction force production change with radius during flat curve sprinting

Author:

Diaz Gabriela B.1ORCID,Alcantara Ryan S.1ORCID,Grabowski Alena M.12ORCID

Affiliation:

1. Applied Biomechanics Lab, University of Colorado Boulder 1 , Department of Integrative Physiology, Boulder, CO 80309 , USA

2. Eastern Colorado Healthcare System 2 Department of Veterans Affairs , , Denver, CO 80205-3540 , USA

Abstract

ABSTRACT Humans attain slower maximum velocity (vmax) on curves versus straight paths, potentially due to centripetal ground reaction force (GRF) production, and this depends on curve radius. Previous studies found GRF production differences between an athlete's inside versus outside leg relative to the center of the curve. Further, sprinting clockwise (CW) versus counterclockwise (CCW) slows vmax. We determined vmax, step kinematics and individual leg GRF on a straight path and on curves with 17.2 and 36.5 m radii for nine (8 male, 1 female) competitive sprinters running CW and CCW and compared vmax with three predictive models. We combined CW and CCW directions and found that vmax slowed by 10.0±2.4% and 4.1±1.6% (P<0.001) for the 17.2 and 36.5 m radius curves versus the straight path, respectively. vmax values from the predictive models were up to 3.5% faster than the experimental data. Contact length was 0.02 m shorter and stance average resultant GRF was 0.10 body weights (BW) greater for the 36.5 versus 17.2 m radius curves (P<0.001). Stance average centripetal GRF was 0.10 BW greater for the inside versus outside leg (P<0.001) on the 36.5 m radius curve. Stance average vertical GRF was 0.21 BW (P<0.001) and 0.10 BW (P=0.001) lower for the inside versus outside leg for the 17.2 and 36.5 m radius curves, respectively. For a given curve radius, vmax was 1.6% faster in the CCW compared with CW direction (P=0.003). Overall, we found that sprinters change contact length and modulate GRFs produced by their inside and outside legs as curve radius decreases, potentially limiting vmax.

Publisher

The Company of Biologists

Reference31 articles.

1. Dryft: a python and MATLAB package to correct drifting ground reaction force signals during treadmill running;Alcantara;J. Open Source Softw.,2019

2. Improving running performance and monitoring injury risk with wearable devices;Alcantara;PhD thesis,2021

3. Lower extremity kinematics of athletics curve sprinting;Alt;J. Sports Sci.,2015

4. Limitations to maximum running speed on flat curves;Chang;J. Exp. Biol.,2007

5. Leg power and hopping stiffness: relationship with sprint running performance;Chelly;Med. Sci. Sports Exerc.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3