9Rgr; and Rac but not Cdc42 regulate endothelial cell permeability

Author:

Wojciak-Stothard B.1,Potempa S.1,Eichholtz T.1,Ridley A.J.1

Affiliation:

1. Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London W1W 7BS, UK. anne@ludwig.ucl.ac.uk

Abstract

Endothelial permeability induced by thrombin and histamine is accompanied by actin stress fibre assembly and intercellular gap formation. Here, we investigate the roles of the Ρ family GTPases Rho1, Rac1 and Cdc42 in regulating endothelial barrier function, and correlate this with their effects on F-actin organization and intercellular junctions. RhoA, Rac1 and Cdc42 proteins were expressed efficiently in human umbilical vein endothelial cells by adenovirus-mediated gene transfer. We show that inhibition of Ρ prevents both thrombin- and histamine-induced increases in endothelial permeability and decreases in transendothelial resistance. Dominant-negative RhoA and a Ρ kinase inhibitor, Y-27632, not only inhibit stress fibre assembly and contractility but also prevent thrombin- and histamine-induced disassembly of adherens and tight junctions in endothelial cells, providing an explanation for their effects on permeability. In contrast, dominant-negative Rac1 induces permeability in unstimulated cells and enhances thrombin-induced permeability, yet inhibits stress fibre assembly, indicating that increased stress fibre formation is not essential for endothelial permeability. Dominant-negative Cdc42 reduces thrombin-induced stress fibre formation and contractility but does not affect endothelial cell permeability or responses to histamine. These results demonstrate that Ρ and Rac act in different ways to alter endothelial barrier function, whereas Cdc42 does not affect barrier function.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 250 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3