General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography

Author:

Gingell D.1,Heavens O.S.1,Mellor J.S.1

Affiliation:

1. Department of Anatomy and Biology, Middlesex Hospital Medical School, London, UK.

Abstract

Total internal reflection fluorescence (TIRF) has recently been used to look at the contacts made between cells and a glass surface on which they are spread. Our method utilizes the fluorescence of a water-soluble dye that acts as an extracellular aqueous volume marker. Fluorescence is stimulated by the short-range electric field near the glass surface that exists under conditions of total internal reflection. Since fluorescence is normally generated beneath a spread cell and not beyond it, the fluorescence of the image is related to the size of the cell-glass water gap. The images obtained are remarkable for their detail, contrast and the absence of confusing granularity due to cytoplasmic heterogeneity, which is commonly seen in interference reflection (IRM) images. We here develop a rigorous electromagnetic theory of total internal reflection in layered structures appropriate for cell contacts and apply it to quantitative TIRF. We show that: (1) TIRF, unlike IRM, can report cell-glass gaps in a way that is practically independent of the detailed physical properties of the cell; (2) TIRF is also far more sensitive than IRM for measuring cell-glass water gaps up to approximately equal to 100nm. These striking results explain the image quality seen by TIRF. As the initial step towards verifying our theory we show that measurement of the fluorescence stimulated by total internal reflection at a simple glass-water interface matches theoretical predictions.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3