Identification of histone deacetylase inhibitors as neutrophil recruitment modulators in zebrafish using a chemical library screen

Author:

Fan Sijia1ORCID,Jiang Jinlong1ORCID,Zhang Huan1ORCID,Wang Cuihong1ORCID,Kong Shang2ORCID,Zhao Tingting2ORCID,Meng Ling1ORCID,Liu Yang1ORCID,Qin Jingjing1,Rong Xiuqin1ORCID,He Zhenting1,He Qinke1ORCID,He Ke1,Chen Ketong1ORCID,Lei Ling1ORCID,Hai Xinyu1ORCID,Nie Hong2ORCID,Ren Chunguang1ORCID

Affiliation:

1. School of Basic Medical Sciences, Chongqing Medical University 1 Laboratory of Developmental Biology, Department of Cell Biology and Genetics , , Chongqing 400016 , China

2. International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University 2 , Guangzhou 510632 , China

Abstract

ABSTRACT Tissue injury-induced neutrophil recruitment is a prerequisite for the initiation and amplification of inflammatory responses. Although multiple proteases and enzymes involved in post-translational modification (PTM) of proteins regulate leukocyte recruitment, an unbiased functional screen of enzymes regulating inflammatory leukocyte recruitment has yet to be undertaken. Here, using a zebrafish tail fin amputation (TFA) model to screen a chemical library consisting of 295 compounds that target proteases and PTM enzymes, we identified multiple histone deacetylase (HDAC) inhibitors that modulate inflammatory neutrophil recruitment. AR-42, a pan-HDAC inhibitor, was shown to inhibit neutrophil recruitment in three different zebrafish sterile tissue injury models: a TFA model, a copper-induced neuromast damage and mechanical otic vesicle injury (MOVI) model, and a sterile murine peritonitis model. RNA sequencing analysis of AR-42-treated fish embryos revealed downregulation of neutrophil-associated cytokines/chemokines, and exogenous supplementation with recombinant human IL-1β and CXCL8 partially restored the defective neutrophil recruitment in AR-42-treated MOVI model fish embryos. We thus demonstrate that AR-42 non-cell-autonomously modulates neutrophil recruitment by suppressing transcriptional expression of cytokines/chemokines, thereby identifying AR-42 as a promising anti-inflammatory drug for treating sterile tissue injury-associated diseases.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Chongqing Municipal Science and Technology Bureau

Chongqing Municipal Human Resources and Social Security Bureau

Chongqing Medical University

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3