Steady as they hover: kinematics of kestrel wing and tail morphing during hovering flights

Author:

Martinez Groves-Raines Mario12ORCID,Yi George12,Penn Matthew1,Watkins Simon1ORCID,Windsor Shane2ORCID,Mohamed Abdulghani1ORCID

Affiliation:

1. RMIT University 1 , Melbourne, VIC 3000 , Australia

2. University of Bristol 2 Department of Aerospace Engineering , , Bristol, BS8 1TR , UK

Abstract

ABSTRACT Wind-hovering birds exhibit remarkable steadiness in flight, achieved through the morphing of their wings and tail. We analysed the kinematics of two nankeen kestrels (Falco cenchroides) engaged in steady wind-hovering flights in a smooth flow wind tunnel. Motion-tracking cameras were used to capture the movements of the birds as they maintained their position. The motion of the birds' head and body, and the morphing motions of their wings and tail were tracked and analysed using correlation methods. The results revealed that wing sweep, representing the flexion/extension movement of the wing, played a significant role in wing motion. Additionally, correlations between different independent degrees of freedom (DoF), including wing and tail coupling, were observed. These kinematic couplings indicate balancing of forces and moments necessary for steady wind hovering. Variation in flight behaviour between the two birds highlighted the redundancy of DoF and the versatility of wing morphing in achieving control. This study provides insights into fixed-wing craft flight control from the avian world and may inspire novel flight control strategies for future fixed-wing aircraft.

Funder

University of Bristol

Air Force Office of Scientific Research

Australian Government

Australian Defence Science Institute

RMIT University

Publisher

The Company of Biologists

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECR Spotlight – Mario Martinez Groves-Raines;Journal of Experimental Biology;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3