Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration

Author:

Runyan Christopher1,Schaible Kyle1,Molyneaux Kathleen2,Wang Zhuoqiao3,Levin Linda3,Wylie Christopher1

Affiliation:

1. Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.

2. Department of Genetics, School of Medicine, Case Western Reserve University,Cleveland, OH 44106, USA.

3. Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.

Abstract

During germ-cell migration in the mouse, the dynamics of embryo growth cause many germ cells to be left outside the range of chemoattractive signals from the gonad. At E10.5, movie analysis has shown that germ cells remaining in the midline no longer migrate directionally towards the genital ridges, but instead rapidly fragment and disappear. Extragonadal germ cell tumors of infancy, one of the most common neonatal tumors, are thought to arise from midline germ cells that failed to die. This paper addresses the mechanism of midline germ cell death in the mouse. We show that at E10.5, the rate of apoptosis is nearly four-times higher in midline germ cells than those more laterally. Gene expression profiling of purified germ cells suggests this is caused by activation of the intrinsic apoptotic pathway. We then show that germ cell apoptosis in the midline is activated by down-regulation of Steel factor (kit ligand) expression in the midline between E9.5 and E10.5. This is confirmed by the fact that removal of the intrinsic pro-apoptotic protein Bax rescues the germ-cell apoptosis seen in Steel null embryos. Two interesting things are revealed by this: first, germ-cell proliferation does not take place in these embryos after E9.0; second, migration of germ cells is highly abnormal. These data show first that changing expression of Steel factor is required for normal midline germ cell death, and second, that Steel factor is required for normal proliferation and migration of germ cells.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3