Chick cranial neural crest cells release extracellular vesicles that are critical for their migration

Author:

Gustafson Callie M.12ORCID,Roffers-Agarwal Julaine12ORCID,Gammill Laura S.12ORCID

Affiliation:

1. University of Minnesota 1 Department of Genetics, Cell Biology and Development , , 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455 , USA

2. Developmental Biology Center, University of Minnesota 2 , 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455 , USA

Abstract

ABSTRACT The content and activity of extracellular vesicles purified from cell culture media or bodily fluids have been studied extensively; however, the physiological relevance of exosomes within normal biological systems is poorly characterized, particularly during development. Although exosomes released by invasive metastatic cells alter migration of neighboring cells in culture, it is unclear whether cancer cells misappropriate exosomes released by healthy differentiated cells or reactivate dormant developmental programs that include exosome cell–cell communication. Using chick cranial neural fold cultures, we show that migratory neural crest cells, a developmentally critical cell type and model for metastasis, release and deposit CD63-positive 30–100 nm particles into the extracellular environment. Neural crest cells contain ceramide-rich multivesicular bodies and produce larger vesicles positive for migrasome markers as well. We conclude that neural crest cells produce extracellular vesicles including exosomes and migrasomes. When Rab27a plasma membrane docking is inhibited, neural crest cells become less polarized and rounded, leading to a loss of directional migration and reduced speed. These results indicate that neural crest cell exosome release is critical for migration.

Funder

University of Minnesota

National Science Foundation

National Institutes of Health

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3