Nicotiana tabacumTTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes

Author:

Wang Yunpeng1,Liu Ruoxue1,Chen Lei1,Wang Yuancong1,Liang Yuancun2,Wu Xiaojing1,Li Baoyan1,Wu Jiandong1,Liang Yuan1,Wang Xiaomeng1,Zhang Chunling1,Wang Qiuxia1,Hong Xiaoyue1,Dong Hansong1

Affiliation:

1. Key Laboratory of Monitoring and Management of Crop Pathogens and Insect Pests, Ministry of Agriculture of P.R. China, Nanjing Agricultural University, Nanjing 210095, China

2. Department of Plant Pathology, Shandong Agricultural University, Taian 271018, China

Abstract

Leaf trichomes serve as a physical barrier and can also secrete antimicrobial compounds to protect plants from attacks by insects and pathogens. Besides the use of the physical and chemical mechanisms, leaf trichomes might also support plant responses by communicating the extrinsic cues to plant intrinsic signalling pathways. Here we report a role of leaf trichomes in tobacco (Nicotiana tabacum) hypersensitive cell death (HCD) induced by ParA1, an elicitin protein from a plant-pathogenic oomycete. After localized treatment with ParA1, reactive oxygen species were produced first in the leaf trichomes and then in mesophylls. Reactive oxygen species are a group of intracellular signals that are crucial for HCD to develop and for cells to undergo cell death subsequent to chromatin condensation, a hallmark of HCD. These events were impaired when the production of hydrogen peroxide (H2O2) was inhibited by catalase or a NADPH-oxidase inhibitor applied to trichomes, suggesting the importance of H2O2 in the pathway of HCD signal transduction from the trichomes to mesophylls. This pathway was no longer activated when leaf trichomes were treated with C51S, a ParA1 mutant protein defective in its interaction with N. tabacum TTG1 (NtTTG1), which is a trichome protein that binds ParA1, rather than C51S, in vitro and in trichome cells. The ParA1-NtTTG1 interaction and the HCD pathway were also abrogated when NtTTG1 was silenced in the trichomes. These observations suggest that NtTTG1 plays an essential role in HCD signal transduction from leaf trichomes to mesophylls.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3