THE ROLE OF A ZINC-BASED, SERUM-BORNE SULPHIDE-BINDING COMPONENT IN THE UPTAKE AND TRANSPORT OF DISSOLVED SULPHIDE BY THE CHEMOAUTOTROPHIC SYMBIONT-CONTAINING CLAM CALYPTOGENA ELONGATA

Author:

Childress J. J.,Fisher C. R.,Favuzzi J. A.,Arp A. J.,Oros D. R.

Abstract

Calyptogena elongata is a small (about 7 cm maximum length) species of vesicomyid clam which lives at depths of 494–503 m, near the sill depth, in the Santa Barbara Channel in mildly reducing muds at low ambient oxygen concentrations. This species has abundant autotrophic sulphur- oxidizing bacteria in bacteriocytes in its gills. The stable carbon isotope composition values of its gills and other tissues range from −36 to −38 “, supporting the suggestion that the primary carbon source for this symbiosis is inorganic carbon fixed by the endosymbionts. This species of clam concentrates sulphide into its blood serum by using a sulphide-binding component and into the gills by using an unknown sulphide-binding activity. In both tissues, total H2S concentrations within the clam can greatly exceed those outside. This apparently enables the clam to concentrate sufficient sulphide from the mildly reducing muds to support the needs of its endosymbionts. Both of these binding activities are reversible in vivo as shown by the rapid declines in blood and gill sulphide levels when the clams are deprived of sulphide and the rapid concentration of sulphide into the blood and gills when it is provided. For example, within minutes of exposure to 65 micromolar H2S, gill and blood total H2S concentrations in individual C. elongata exceed the external concentration; within 2 h they reach maximum concentrations of about 2 mmol l-1. When such experiments are carried out under anoxic conditions, the blood and gill total H2S concentrations approach saturation (10–20 mmol l-1), indicating that under oxic conditions the oxidation of sulphide by the clam and its endosymbionts holds the binding components below saturation and enables them to protect the animal tissues and endosymbionts from toxic concentrations of sulphide. In contrast to these results for C. elongata, our experiments show that the host of another chemoautotrophic symbiosis, Solemya reidi, does not concentrate sulphide from the medium into either its blood or its gills. Data are presented which indicate that the serum sulphide-binding component is a large molecular mass molecule with Zn2+ at the active site. This study strongly supports the model of vesicomyid functioning in which the blood- borne sulphide-binding component concentrates sulphide from the reducing environment around the clam's foot and transports this sulphide to the symbionts in the gills. Data are also presented which indicate that the clam oxidizes some sulphide to thiosulphate and transports this to the gills as well. Thus, individual C. elongata, like the previously studied C. magnifica, appear to bridge the reducing and oxidizing zones of their habitats to provide needed substrates to their endosymbionts. Examination of these two species and the anatomy of other vesicomyid species suggest that vesicomyid clams are functionally quite conservative.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3