Coordinated movements between autosomal half-bivalents in crane-fly spermatocytes: evidence that ‘stop’ signals are sent between partner half-bivalents

Author:

Yin B.1,Forer A.1

Affiliation:

1. Biology Department, York University, Downsview, Ontario, Canada.

Abstract

During anaphase-I in crane-fly spermatocytes, sister half-bivalents separate and move to opposite poles. When we irradiate a kinetochore spindle fibre with an ultraviolet microbeam, the associated half-bivalent temporarily stops moving and so does the partner half-bivalent with which it was paired during metaphase. To test whether a ‘signal’ is transmitted between partner half-bivalents we irradiated the spindle twice, once in the interzone (the region between separating partner half-bivalents) and once in a kinetochore fibre. For both irradiations we used light of wavelength 290 microns and a dose that, after irradiating a spindle fibre only, altered movement in 63% of irradiations (12/19); in 11 of the 12 cells both partner half-bivalents stopped moving after the irradiation. In control experiments we irradiated the interzone only: these irradiations generally did not stop chromosomal poleward motion but sometimes (14/29) caused poleward movement to each pole to be abruptly reduced to about half the velocity prior to irradiation. In double irradiation experiments we varied the order of the irradiations. In some double irradiation experiments we irradiated the interzonal region first and the spindle fibre second; in 75% (9/12) of the cells the half-bivalent associated with the irradiated fibre stopped moving while the partner half-bivalent moved normally, i.e. in 9/12 cells the interzonal irradiations uncoupled the movements of the partner half-bivalents. In other double irradiation experiments we irradiated the spindle fibre first and the interzone second: in 80% (4/5) of the cells the half-bivalents not associated with the irradiated spindle fibre resumed movement immediately after the irradiation while the other half-bivalent remained stopped. Interzonal irradiations therefore uncouple the poleward movements of sister half-bivalents and the uncoupling does not depend on the order of the irradiation. Our experiments suggest therefore that the irradiation of a spindle fibre causes negative (‘stop’) signals to be transmitted across the interzone and that irradiation of the interzone blocks the transmission of the stop signal.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3