TGF beta 1 promotes actin cytoskeleton reorganization and migratory phenotype in epithelial tracheal cells in primary culture

Author:

Boland S.1,Boisvieux-Ulrich E.1,Houcine O.1,Baeza-Squiban A.1,Pouchelet M.1,Schoevaert D.1,Marano F.1

Affiliation:

1. Laboratoire de Cytophysiologie et de Toxicologie Cellulaire, Universite Paris 7 Denis Diderot, France.

Abstract

In the present study we have investigated the effects of transforming growth factor beta (TGF beta 1) on rabbit tracheal epithelial cells in primary culture, with respect to cell proliferation and differentiation. Epithelial tracheal cells derived from an explant plated on an extracellular matrix, formed an outgrowth resulting from cell division and cell migration. TGF beta 1 treatment produced a negative effect on cell proliferation, but in contrast, promoted a marked enhancement of cell migration and increase in outgrowth surface. TGF beta 1 induced marked cell shape changes, including cell spreading and lack of stratification, associated with reduced cell-cell contacts and increased cell-substratum anchorage, as seen by electron microscopic observations. Immunocytological studies demonstrated major TGF beta 1-induced actin cytoskeleton reorganization, corresponding to the development of a basal stress fiber network and decrease of the annular cell border, without affecting the tight junctions. The migratory phenotype was approached by microcinematography which clearly showed that TGF beta 1 triggered a stimulatory effect on migration of epithelial cells, determined using an image analyzing system. Present findings suggest a beneficial role for TGF beta 1 during wound healing in providing the acquisition of a migratory phenotype, with a higher capacity to migrate either on collagen or on different extracellular matrix components including laminin and fibronectin. Conversely, present data are not consistent with a squamous response to TGF beta 1, since metaplastic differentiation did not occur, as characterized by cytokeratin expression and cross-linked envelopes formation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3