Magnesium ions and the control of the cell cycle in yeast

Author:

Walker G.M.,Duffus J.H.

Abstract

A study has been made of the role of magnesium ions in cell division cycle control in the fission yeast, Schizosaccharomyces pombe, and the budding yeast, Kluyveromyces fraglis. Synchronization of cell division in these organismms can be induced by restoring magnesium to magnesium-exhausted cultures. In S. pombe, a correlation exists between the time taken for cells to enter the first synchronous division and the period of magnesium exhaustion. During short-term incubation in magnesium-deficient media, S. pombe cells are observed to continue growth in length, but they fail to make a cell plate and divide; long-term magnesium deficiency results in the production of aberrant cell forms, and a reduction in viability. Analysis of total cell magnesium in cultures of both S. pombe and K. fragilis, synchronized by various induction and selection procedures, revealed that there is a fairly steady fall in magnesium concentration as cells grow, terminating in a rapid influx of magnesium just before cell division. This leads to the hypothesis that falling magnesium concentration may act as a transducer of cell size, eventually triggering spindle formation and a membrane change which permits rapid uptake of magnesium to a concentration which brings about spindle breakdown. The hypothesis was tested directly using the divalent cation ionophore, A23187, in the absence of calcium ions; the results obtained showed that a short pulse of A23187, very late in the cell cycle, accelerated cells into division and shortened the subsequent cycle. The hypothesis is discussed in relation to current models of cell cycle regulation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3