Bees display limited acclimation capacity for heat tolerance

Author:

Gonzalez Victor H.1ORCID,Herbison Natalie1,Robles Perez Gabriela2,Panganiban Trisha3,Haefner Laura4,Tscheulin Thomas5,Petanidou Theodora5,Hranitz John6

Affiliation:

1. University of Kansas 1 Undergraduate Biology Program and Department of Ecology and Evolutionary Biology , , Lawrence, KS, 66045 , USA

2. Department of Agriculture, University of Puerto Rico 2 , Mayaguez, PR, 00681-9000 , USA

3. Department of Biological Sciences, California State University 3 , Los Angeles, CA, 35229 , USA

4. Biology Department, Waynesburg University 4 , PA, 47243 , USA

5. University of the Aegean, University Hill 5 Laboratory of Biogeography and Ecology, Department of Geography , , Mytilene, 81100 , Greece

6. 6 Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, 17815 PA, USA

Abstract

ABSTRACT Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees’ acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.

Funder

The University of Kansas

Publisher

The Company of Biologists

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3