Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments

Author:

Campbell C.L.1,Thorsness P.E.1

Affiliation:

1. Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA.

Abstract

Inactivation of Yme1p, a mitochondrially-localized ATP-dependent metallo-protease in the yeast Saccharomyces cerevisiae, causes a high rate of DNA escape from mitochondria to the nucleus as well as pleiotropic functional and morphological mitochondrial defects. The evidence presented here suggests that the abnormal mitochondria of a yme1 strain are degraded by the vacuole. First, electron microscopy of Yme1p-deficient strains revealed mitochondria physically associated with the vacuole via electron dense structures. Second, disruption of vacuolar function affected the frequency of mitochondrial DNA escape from yme1 and wild-type strains. Both PEP4 or PRC1 gene disruptions resulted in a lower frequency of mitochondrial DNA escape. Third, an in vivo assay that monitors vacuole-dependent turnover of the mitochondrial compartment demonstrated an increased rate of mitochondrial turnover in yme1 yeast when compared to the rate found in wild-type yeast. In this assay, vacuolar alkaline phosphatase, encoded by PHO8, was targeted to mitochondria in a strain bearing disruption to the genomic PHO8 locus. Maturation of the mitochondrially localized alkaline phosphatase pro-enzyme requires proteinase A, which is localized in the vacuole. Therefore, alkaline phosphatase activity reflects vacuole-dependent turnover of mitochondria. This assay reveals that mitochondria of a yme1 strain are taken up by the vacuole more frequently than mitochondria of an isogenic wild-type strain when these yeast are cultured in medium necessitating respiratory growth. Degradation of abnormal mitochondria is one pathway by which mitochondrial DNA escapes and migrates to the nucleus.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3