A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation

Author:

Aitken R.J.1,Harkiss D.1,Knox W.1,Paterson M.1,Irvine D.S.1

Affiliation:

1. MRC Reproductive Biology Unit, Edinburgh EH3 9EW, Scotland.

Abstract

Capacitation is a priming event that renders mammalian spermatozoa responsive to signals originating from the cumulus-oocyte complex. The attainment of a capacitated state is dependent upon an increase in tyrosine phosphorylation and results in the acquisition of responsiveness to physiological agonists such as progesterone and ZP3. In this study we have shown that this capacitation-dependent increase in tyrosine phosphorylation is controlled by a unique redox-regulated, cAMP-mediated, signal transduction cascade. Either stimulation of reactive oxygen species generation or elevation of intracellular cAMP induced increases in phosphotyrosine expression by human spermatozoa and enhanced their responsiveness to progesterone. Ultimate convergence of the redox- and cAMP-regulated pathways was indicated by the ability of the protein kinase A inhibitor, H89, to block both modes of signal transduction. Furthermore, the fact that the redox-regulated pathway could be silenced by catalase, while this enzyme had no effect on the cAMP-mediated response, indicated that oxidant generation must lie upstream from cAMP in the reaction sequence. In keeping with this conclusion, a functional association was demonstrated between the redox status of human spermatozoa and their cAMP content. The continuous production of reactive oxygen species was also shown to be necessary for the protein kinase A-tyrosine phosphorylation axis to remain functional. If the generation of oxidising conditions during capacitation was prevented with 2-mercaptoethanol, 2-deoxyglucose or the flavoprotein inhibitor, diphenylene iodonium, then cAMP could no longer trigger tyrosine phosphorylation. These data support a model for human sperm capacitation as a redox-regulated process, involving a unique sequence of interactive events including reactive oxygen species production, elevation of intracellular cAMP, stimulation of protein kinase A and the induction of tyrosine phosphorylation. This is the first report of such a signal transduction cascade and may have implications for the functional significance of reactive oxygen metabolites in other cell types.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3