An evaluation of muscle maintenance costs during fiber hypertrophy in the lobster Homarus americanus: are larger muscle fibers cheaper to maintain?

Author:

Jimenez Ana Gabriela1,Dasika Santosh K.2,Locke Bruce R.2,Kinsey Stephen T.1

Affiliation:

1. Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA

2. Department of Chemical and Biomedical Engineering, Florida State University, FAMU-FSU, College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA

Abstract

SUMMARY Large muscle fiber size imposes constraints on muscle function while imparting no obvious advantages, making it difficult to explain why muscle fibers are among the largest cell type. Johnston and colleagues proposed the ‘optimal fiber size’ hypothesis, which states that some fish have large fibers that balance the need for short diffusion distances against metabolic cost savings associated with large fibers. We tested this hypothesis in hypertrophically growing fibers in the lobster Homarus americanus. Mean fiber diameter was 316±11 μm in juveniles and 670±26 μm in adults, leading to a surface area to volume ratio (SA:V) that was 2-fold higher in juveniles. Na+/K+-ATPase activity was also 2-fold higher in smaller fibers. 31P-NMR was used with metabolic inhibitors to determine the cost of metabolic processes in muscle preparations. The cost of Na+/K+-ATPase function was also 2-fold higher in smaller than in larger diameter fibers. Extrapolation of the SA:V dependence of the Na+/K+-ATPase over a broad fiber size range showed that if fibers were much smaller than those observed, maintenance of the membrane potential would constitute a large fraction of whole-animal metabolic rate, suggesting that the fibers grow large to reduce maintenance costs. However, a reaction–diffusion model of aerobic metabolism indicated that fibers in adults could attain still larger sizes without diffusion limitation, although further growth would have a negligible effect on cost. Therefore, it appears that decreased fiber SA:V makes larger fibers in H. americanus less expensive to maintain, which is consistent with the optimal fiber size hypothesis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3