Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton

Author:

Long Fanxin1,Chung Ung-il2,Ohba Shinsuke3,McMahon Jill1,Kronenberg Henry M.2,McMahon Andrew P.1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge,MA 02138, USA

2. Endocrine Unit, Massachusetts General Hospital, Harvard Medical School,Boston, MA 02114, USA

3. Department of Bone and Cartilage Regenerative Medicine, University of Tokyo School of Medicine, Tokyo, Japan

Abstract

Indian hedgehog (Ihh) is indispensable for development of the osteoblast lineage in the endochondral skeleton. In order to determine whether Ihh is directly required for osteoblast differentiation, we have genetically manipulated smoothened (Smo), which encodes a transmembrane protein that is essential for transducing all Hedgehog (Hh) signals. Removal of Smo from perichondrial cells by the Cre-LoxP approach prevents formation of a normal bone collar and also abolishes development of the primary spongiosa. Analysis of chimeric embryos composed of wild-type and Smon/n cells indicates that Smon/n cells fail to contribute to osteoblasts in either the bone collar or the primary spongiosa but generate ectopic chondrocytes. In order to assess whether Ihh is sufficient to induce bone formation in vivo, we have analyzed the bone collar in the long bones of embryos in which Ihh was artificially expressed in all chondrocytes by the UAS-GAL4 bigenic system. Although ectopic Ihh does not induce overt ossification along the entire cartilage anlage, it promotes progression of the bone collar toward the epiphysis, suggesting a synergistic effect between ectopic Ihh and endogenous factors such as the bone morphogenetic proteins (BMPs). In keeping with this model, Hh signaling is further found to be required in BMP-induced osteogenesis in cultures of a limb-bud cell line. Taken together, these results demonstrate that Ihh signaling is directly required for the osteoblast lineage in the developing long bones and that Ihh functions in conjunction with other factors such as BMPs to induce osteoblast differentiation. We suggest that Ihh acts in vivo on a potential progenitor cell to promote osteoblast and prevent chondrocyte differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference32 articles.

1. Byrd, N., Becker, S., Maye, P., Narasimhaiah, R., St-Jacques,B., Zhang, X., McMahon, J., McMahon, A. and Grabel, L.(2002). Hedgehog is required for murine yolk sac angiogenesis. Development129,361-372.

2. Caplan, A. I. and Pechak, D. G. (1987). The cellular and molecular embryology of bone formation. In Bone and Mineral Research vol. 5 (ed. W. A. Peck),pp. 117-183. New York, NY: Elsevier.

3. Chen, Y. and Struhl, G. (1996). Dual roles for patched in sequestering and transducing Hedgehog. Cell87,553-563.

4. Chung, U. I., Lanske, B., Lee, K., Li, E. and Kronenberg, H.(1998). The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc. Natl. Acad. Sci. USA95,13030-13035.

5. Chung, U. I., Schipani, E., McMahon, A. P. and Kronenberg, H. M. (2001). Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J. Clin. Invest.107,295-304.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3