Basic limb kinematics of small therian mammals

Author:

Fischer Martin S.1,Schilling Nadja1,Schmidt Manuela1,Haarhaus Dieter2,Witte Hartmut1

Affiliation:

1. Institut für Spezielle Zoologie und Evolutionsbiologie,Friedrich-Schiller-Universität, Jena, Erbertstrasse 1, D-07743 Jena,Germany

2. IWF Knowledge and Media gGmbH, Nonnenstieg 72, D-37075 Göttingen, PO box 2351, Germany

Abstract

SUMMARYA comparative study of quantitative kinematic data of fore- and hindlimb movements of eight different mammalian species leads to the recognition of basic principles in the locomotion of small therians. The description of kinematics comprises fore- and hindlimb movements as well as sagittal spine movements including displacement patterns of limb segments, their contribution to step length, and joint movements. The comparison of the contributions of different segments to step length clearly shows the proximal parts (scapula,femur) to produce more than half of the propulsive movement of the whole limb at symmetrical gaits. Basically, a three-segmented limb with zigzag configuration of segments is mainly displaced at the scapular pivot or hip joint, both of which have the same vertical distance to the ground. Two segments operate in matched motion during retraction of the limb. While kinematic parameters of forelimbs are independent of speed and gait (with the scapula as the dominant element), fundamental changes occur in hindlimb kinematics with the change from symmetrical to in-phase gaits. Forward motion of the hindlimbs is now mainly due to sagittal lumbar spine movements contributing to half of the step length. Kinematics of small therian mammals are independent of their systematic position, their natural habitat, and also of specific anatomical dispositions (e.g. reduction of fingers, toes, or clavicle). In contrast, the possession of a tail influences `pelvic movements'.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3