Measuring body temperature in birds – the effects of sensor type and placement on estimated temperature and metabolic rate

Author:

Andreasson Fredrik1ORCID,Rostedt Elin1,Nord Andreas1ORCID

Affiliation:

1. Lund University Department of Biology, Section for Evolutionary Ecology , , Ecology Building, SE-223 62 Lund , Sweden

Abstract

ABSTRACT Several methods are routinely used to measure avian body temperature, but different methods vary in invasiveness. This may cause stress-induced increases in temperature and/or metabolic rate and, hence, overestimation of both parameters. Choosing an adequate temperature measurement method is therefore key to accurately characterizing an animal's thermal and metabolic phenotype. Using great tits (Parus major) and four common methods with different levels of invasiveness (intraperitoneal, cloacal, subcutaneous, cutaneous), we evaluated the preciseness of body temperature measurements and effects on resting metabolic rate (RMR) over a 40°C range of ambient temperatures. None of the methods caused overestimation or underestimation of RMR compared with un-instrumented birds, and body or skin temperature estimates did not differ between methods in thermoneutrality. However, skin temperature was lower compared with all other methods below thermoneutrality. These results provide empirical guidance for future research that aims to measure body temperature and metabolic rate in small bird models.

Funder

Royal Physiographic Society

Vetenskapsrådet

Lund University

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3