Hesgenes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation

Author:

Hatakeyama Jun1,Bessho Yasumasa1,Katoh Kazuo2,Ookawara Shigeo2,Fujioka Makio3,Guillemot François4,Kageyama Ryoichiro1

Affiliation:

1. Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan

2. Department of Anatomy, Jichi Medical School, Tochigi 329-0498, Japan

3. Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan

4. National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK

Abstract

Radial glial cells derive from neuroepithelial cells, and both cell types are identified as neural stem cells. Neural stem cells are known to change their competency over time during development: they initially undergo self-renewal only and then give rise to neurons first and glial cells later. Maintenance of neural stem cells until late stages is thus believed to be essential for generation of cells in correct numbers and diverse types, but little is known about how the timing of cell differentiation is regulated and how its deregulation influences brain organogenesis. Here, we report that inactivation of Hes1 and Hes5, known Notch effectors, and additional inactivation of Hes3 extensively accelerate cell differentiation and cause a wide range of defects in brain formation. In Hes-deficient embryos, initially formed neuroepithelial cells are not properly maintained, and radial glial cells are prematurely differentiated into neurons and depleted without generation of late-born cells. Furthermore,loss of radial glia disrupts the inner and outer barriers of the neural tube,disorganizing the histogenesis. In addition, the forebrain lacks the optic vesicles and the ganglionic eminences. Thus, Hes genes are essential for generation of brain structures of appropriate size, shape and cell arrangement by controlling the timing of cell differentiation. Our data also indicate that embryonic neural stem cells change their characters over time in the following order: Hes-independent neuroepithelial cells,transitory Hes-dependent neuroepithelial cells and Hes-dependent radial glial cells.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3