Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei

Author:

Alexander David L.1,Schwartz Kevin J.2,Balber Andrew E.3,Bangs James D.2

Affiliation:

1. Present address: Department of Microbiology and Immunology, Stanford University Medical School, Fairchild Building, D305, Stanford, CA 94305,USA

2. The Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA

3. Present address: StemCo Biomedical Inc., 2810 Meridian Parkway, Suite 148,Durham, NC 27713, USA

Abstract

p67 is a lysosomal type I membrane glycoprotein of Trypanosoma brucei. In procyclic stage cells p67 trafficks to the lysosome without modification, but in the bloodstream stage Golgi processing adds poly-N-acetyllactosamine to N-glycans. In both stages proteolytic fragmentation occurs in the lysosome, but turnover is approximately nine times faster in bloodstream cells. Trafficking of wildtype p67 and mutants missing the cytoplasmic (p67ΔCD) or cytoplasmic/transmembrane domains (p67ΔTM) was monitored by pulse-chase,surface biotinylation and immunofluorescence. Overexpressed wildtype p67 trafficks normally in procyclics, but some leaks to the cell surface suggesting that the targeting machinery is saturable. p67ΔCD and p67ΔTM are delivered to the cell surface and secreted, respectively. The membrane/cytoplasmic domains function correctly in procyclic cells when fused to GFP indicating that these domains are sufficient for stage-specific lysosomal targeting. In contrast, p67 wildtype and deletion reporters are overwhelmingly targeted to the lysosome and degraded in bloodstream cells. These findings suggest that either redundant developmentally regulated targeting signals/machinery are operative in this stage or that the increased endocytic activity of bloodstream cells prevents export of the deletion reporters.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3