Plasma membrane localization of the Yck2p yeast casein kinase 1 isoform requires the C-terminal extension and secretory pathway function

Author:

Babu Praveen1,Bryan Joshua D.1,Panek Heather R.2,Jordan Solomon L.1,Forbrich Brynn M.1,Kelley Shannon C.1,Colvin Richard T.1,Robinson Lucy C.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA

2. Present address: SUNY-Buffalo, Department of Biochemistry, 140 Farber Hall,Buffalo, NY 14214, USA

Abstract

The S. cerevisiae Yck2 protein is a plasma membrane-associated member of the casein kinase 1 protein kinase family that, with its homolog Yck1p, is required for bud morphogenesis, cytokinesis, endocytosis and other cellular processes. Membrane localization of Yckp is critical for its function, since soluble mutants do not provide sufficient biological activity to sustain normal growth. Yck2p has neither a predicted signal sequence nor obvious transmembrane domain to achieve its plasma membrane localization, but has a C-terminal -Cys-Cys sequence that is likely to be palmitoylated. We demonstrate here that Yck2p is targeted through association with vesicular intermediates of the classical secretory pathway. Yck2p lacking C-terminal Cys residues fails to associate with any membrane, whereas substitution of these residues with a farnesyl transferase signal sequence allows sec-dependent plasma membrane targeting and biological function,suggesting that modification is required for interaction with early secretory membranes but that targeting does not require a particular modification. Deletion analysis within the 185 residue C-terminus indicates that the final 28 residues are critical for membrane association, and additional sequences just upstream are required for proper plasma membrane targeting.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3