Stromal Fat4 acts non-autonomously with Dachsous1/2 to restrict the nephron progenitor pool

Author:

Bagherie-Lachidan Mazdak12,Reginensi Antoine2,Zaveri Hitisha P.3,Scott Daryl A.3,Helmbacher Françoise4,McNeill Helen12

Affiliation:

1. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

2. Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5

3. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030

4. Institut de Biologie du Developement de Marseille, CNRS UMR 7288

Abstract

Regulation of the balance between progenitor self-renewal and differentiation is critical to development. In the mammalian kidney, reciprocal signaling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin Fat4 or its ligand Dachsous1 (Dchs1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to misregulation of the Hippo kinase pathway transcriptional co-activator YAP. Here, we use tissue-specific deletions to prove that Fat4 acts non-autonomously in the renal stroma to control nephron progenitors. We show that loss of Yap from the CM in a Fat4-null background does not reduce the expanded CM, indicating Fat4 regulates the CM independent of YAP. Analysis of Six2-/-;Fat4-/- double mutants demonstrates that excess progenitors in Fat4 mutants are dependent on Six2, a critical regulator of nephron progenitor self-renewal. Electron microscopy reveals that cell organization is disrupted in Fat4 mutants. Gene expression analysis demonstrates that the expression of Notch and FGF pathway components are altered in Fat4 mutants. Finally, we show that Dchs1, and its paralog Dchs2 function in a partially redundant fashion to regulate the number of nephron progenitors. Our data supports a model in which FAT4 in the stroma binds to DCHS1/2 in the CM to restrict progenitor self-renewal.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3