Development and fertility of ovaries in the B6.YDOM sex-reversed female mouse

Author:

Taketo-Hosotani T.1,Nishioka Y.1,Nagamine C.M.1,Villalpando I.1,Merchant-Larios H.1

Affiliation:

1. Urology Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Canada.

Abstract

When the Y chromosome of Mus musculus domesticus (YDOM) was introduced onto the C57BL/6 (B6) mouse background, half of the XY progeny (B6.YDOM) developed bilateral ovaries and female internal and external genitalia. We examined the fertility of the B6.YDOM sex-reversed female mouse. The chromosomal sex of the individual mouse was identified by dot hybridization with mouse Y chromosome-specific DNA probes. The results indicated that all XY females lacked regular estrous cyclicity although most were able to mate and ovulate after treatment with gonadotropins. When they had been ovariectomized and grafted with ovaries from the XX female litter mate, they initiated estrous cyclicity. Reciprocally, the XX female that had received XY ovarian grafts did not resume estrous cyclicity. Development of the XY ovary was morphologically comparable to the XX ovary until 16 day of gestation (d.g.), when most germ cells had reached the zygotene or pachytene stage of meiotic prophase. However, by the day of delivery (19 or 20 d.g.), no oocyte remained in the medullary cords of the XY ovary. In the control XX ovary, the first generation of follicles developed in the medullary region, and 5 delta-3 beta-hydroxysteroid dehydrogenase (3 beta-HSDH) activity appeared first in the stromal cells around growing follicles by 10 days after birth. In contrast, in the XY ovary, follicles were not formed in the medullary region, and 3 beta-HSDH activity appeared in epithelial cells of the oocyte-free medullary cords. Primordial follicles in the cortex region continued development in both the XX and XY ovaries. These results suggest that the XY female is infertile due to a defect inside the XY ovary. The prenatal loss of oocytes in the medullary cords may be a key event leading to abnormal endocrine function, and thereby, the absence of estrous cyclicity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3