Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study

Author:

Bobbert M.1

Affiliation:

1. Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, The Netherlands. m_f_bobbert@fbw.vu.nl

Abstract

The purposes of this study were to determine the dependence of human squat jump performance on the compliance of series elastic elements (SEEs) of the triceps surae (consisting of the soleus and gastrocnemius) and to explain this dependence. Vertical squat jumps were simulated using an optimal control model of the human musculo-skeletal system. Maximum jump height was found for several values of triceps surae SEE strain at maximum isometric force (ε (0)). When ε (0) was increased from 1 to 10 %, maximum jump height increased by 8 cm. This was partly due to a higher work output of contractile elements (CEs) of the muscles, primarily of the soleus, and also partly to an increased efficacy of converting muscle work to energy contributing to jump height. The soleus produced more work at ε (0)=10 % because, as a result of SEE recoil, the CE covered its shortening range at lower velocity and hence produced more force. Efficacy was higher at ε (0)=10 % because a higher vertical velocity at take-off was achieved with a lower rotational energy of the body segments. This apparent discrepancy was explained by increased angular velocities of the shanks and feet, which have small moments of inertia, and decreased angular velocities of the thighs and trunk, which have larger moments of inertia. This redistribution of segmental contributions to the vertical velocity of the centre of mass was possible because the increased compliance of the triceps surae SEE enhanced the energy-buffering capacity of this muscle group and, thereby, allowed for a higher power output at the ankles. It seems that long compliant tendons in the plantar flexors are an elegant solution to the problem of maximizing jumping performance.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3