Bursting properties of caudal neurosecretory cells in the flounder Platichthys flesus, in vitro

Author:

Brierley M. J.1,Ashworth A. J.1,Banks J. R.1,Balment R. J.1,McCrohan C. R.1

Affiliation:

1. School of Biological Sciences, University of Manchester, Manchester, UK

Abstract

SUMMARY Bursting activity in type 1 Dahlgren cells was studied using intra- and extracellular recording from an in vitro preparation of the caudal neurosecretory system of the euryhaline flounder. 45% of cells showed spontaneous bursts of approximately 120s duration and 380s cycle period. Similar bursts were triggered by short duration (<5s) depolarising or hyperpolarising pulses. Cells displayed a characteristic depolarising after potential, following either an action potential with associated afterhyperpolarisation, or a hyperpolarising current pulse. This depolarising after potential was related to a ‘sag’ potential, which developed during the hyperpolarising pulse. Both the depolarising after potential and the sag potential occurred only in cells at more depolarised (<60mV) holding potentials. In addition, the amplitude of the depolarising after potential was dependent on the amplitude and the duration of the hyperpolarising pulse. The depolarising after potential following action potentials may provide a mechanism for facilitating repetitive firing during a burst. Extracellular recording revealed similar bursting in individual units which was not, however, synchronised between units. Spontaneous bursting activity recorded both intra- and extracellularly was inhibited by application of a known neuromodulator of the system, 5-hydroxytryptamine. This study provides a basis for investigating the relationship between physiological status, Dahlgren cell activity and neuropeptide secretion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3