Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon

Author:

Bower Neil I.1,Li Xuejun1,Taylor Richard2,Johnston Ian A.1

Affiliation:

1. Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK

2. EWOS Innovation, 4335 Dirdal, Norway

Abstract

SUMMARY In this study we describe the complete coding sequence for insulin-like growth factor I (IGF-I), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein (IGFBP) 1, 2, 4, 5 and 6 and IGFBP-related protein 1 (IGFBP-rP1) of Atlantic salmon (Salmo salar L.). We also report the characterisation of two gene paralogues of IGFBP-2 and IGFBP-5. Following 22 days restricted feeding (0 d) to achieve zero growth, fish were fed to satiation and sampled at 3, 5, 7, 14, 30 and 60 days. Expression profiles for genes involved in the IGF signalling pathway in fast myotomal muscle were determined using real-time quantitative RT-PCR. The transition from zero to fast growth is characterised by constitutive upregulation of IGF-I and IGFBP-4, a transient increase in IGFBP-5.2, and downregulation of IGFBP-2.1, IGF-II, IGF2R (IGF-II receptor) and IGFR1a (IGF-I receptor a). Expression of IGFBP-2.2, IGFBP-5.1, IGFBP-6, IGFBP-rP1 and IGFR1b showed little or no response to feeding. Expression of the myogenic marker genes myogenin, MHC and MLC2 were higher with feed restriction, and decreased as an early response to feeding, before increasing to a peak at 14 days,corresponding with a peak in IGF-I expression. IGFBP-4, which contains a putative connective tissue localisation signal, was the only IGFBP constitutively upregulated following feeding, and was positively correlated with IGF-I expression. Together, these data show that switching to fast growth in Atlantic salmon skeletal muscle involves the local upregulation of IGF-I,IGFBP-5.2 and IGFBP-4, with downregulation of IGFBP-2.1.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3