Characterisation of transcriptionally active and inactive chromatin domains in neurons

Author:

Akhmanova A.1,Verkerk T.1,Langeveld A.1,Grosveld F.1,Galjart N.1

Affiliation:

1. MGC Department of Cell Biology and Genetics, Erasmus University, PO Box 1738, Rotterdam, The Netherlands.

Abstract

The tandemly organised ribosomal DNA (rDNA) repeats are transcribed by a dedicated RNA polymerase in a specialised nuclear compartment, the nucleolus. There appears to be an intimate link between the maintenance of nucleolar structure and the presence of heterochromatic chromatin domains. This is particularly evident in many large neurons, where a single nucleolus is present, which is separated from the remainder of the nucleus by a characteristic shell of heterochromatin. Using a combined fluorescence in situ hybridisation and immunocytochemistry approach, we have analysed the molecular composition of this highly organised neuronal chromatin, to investigate its functional significance. We find that clusters of inactive, methylated rDNA repeats are present inside large neuronal nucleoli, which are often attached to the shell of heterochromatic DNA. Surprisingly, the methylated DNA-binding protein MeCP2, which is abundantly present in the centromeric and perinucleolar heterochromatin, does not associate significantly with the methylated rDNA repeats, whereas histone H1 does overlap partially with these clusters. Histone H1 also defines other, centromere-associated chromatin subdomains, together with the mammalian Polycomb group factor Eed. These data indicate that neuronal, perinucleolar heterochromatin consists of several classes of inactive DNA, that are linked to a fraction of the inactive rDNA repeats. These distinct chromatin domains may serve to regulate RNA transcription and processing efficiently and to protect rDNA repeats against unwanted silencing and/or homologous recombination events.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3