Developmental biology of the pancreas

Author:

Slack J.M.1

Affiliation:

1. Department of Zoology, Oxford University, UK.

Abstract

The pancreas is an organ containing two distinct populations of cells, the exocrine cells that secrete enzymes into the digestive tract, and the endocrine cells that secrete hormones into the bloodstream. It arises from the endoderm as a dorsal and a ventral bud which fuse together to form the single organ. Mammals, birds, reptiles and amphibians have a pancreas with similar histology and mode of development, while in some fish, the islet cells are segregated as Brockmann bodies. Invertebrates do not have a pancreas, but comparable endocrine cells may be found in the gut or the brain. The early pancreatic bud shows uniform expression of the homeobox gene IPF-1 (also known as IDX-1, STF-1 or PDX), which when mutated to inactivity leads to total absence of the organ. The occurrence of heterotopic pancreas in the embryo, and also the metaplasias that can be displayed by a regenerating pancreas in the adult, both suggest that only a few gene products distinguish the pancreatic cell state from that of the surrounding tissues of duodenum, gall bladder and liver. In the developing pancreatic buds, the endocrine cells start to differentiate before the exocrine cells, and co-expression of different hormones by the same cell is often observed at early stages. Although pancreatic endocrine cells produce many gene products also characteristic of neurons, evidence from in vitro cultures and from quailchick grafts shows that they are of endogenous and not of neural crest origin. Observational studies suggest strongly that both endocrine and exocrine cells arise from the same endodermal rudiment. Development of the pancreas in embryonic life requires a trophic stimulus from the associated mesenchyme. In postnatal life, all cell types in the pancreas continue to grow. Destruction of acinar tissue by duct ligation or ethionine treatment is followed by rapid regeneration. Surgical removal of parts of the pancreas is followed by moderate but incomplete regeneration of both acini and islets. Poisoning with alloxan or streptozotocin can lead to permanent depletion of beta cells. Although the cell kinetics of the pancreas are not understood, it seems likely that there is a continuous slow turnover of cells, fed from a stem cells population in the ducts, and that the controls on the production rate of each cell type are local rather than systemic.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference67 articles.

1. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons.;Alpert;Cell,,1988

2. An experimental investigation into the possible neural crest origin of pancreatic APUD (islet) cells.;Andrew;J. Embryol. Exp. Morph,1976

3. Responses of neonatal rat islets to streptozotocin.;Bonner-Weir;Diabetes,1981

4. Aberrant pancreatic tissue in the gastrointestinal tract.;Branch;Arch. Surg,1935

5. Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats.;Brockenbrough;Diabetes,1988

Cited by 533 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3