Affiliation:
1. Department of Geological Sciences, University of Florida, Gainesville, Florida 32611, USA
Abstract
Abstract
Continental crustal structure is the product of those processes that operate typically during a long tectonic history. For the Patagonia composite terrane, these tectonic processes include its early Paleozoic accretion to the South America portion of Gondwana, Triassic rifting of Gondwana, and overriding of Pacific Basin oceanic lithosphere since the Mesozoic. To assess the crustal structure and glean insight into how these tectonic processes affected Patagonia, we combined data from two temporary seismic networks situated inboard of the Chile triple junction, with a combined total of 80 broadband seismic stations. Events suitable for analysis yielded 995 teleseismic receiver functions. We estimated crustal thicknesses using two methods, the H-k stacking method and common conversion point stacking. Crustal thicknesses vary between 30 and 55 km. The South American Moho lies at 28–35 km depth in forearc regions that have experienced ridge subduction, in contrast to crustal thicknesses ranging from 34 to 55 km beneath regions north of the Chile triple junction. Inboard, the prevailing Moho depth of ∼35 km shallows to ∼30 km along an E-W trend between 46.5°S and 47°S; we relate this structure to Paleozoic thrust emplacement of the Proterozoic Deseado Massif terrane above the thicker crust of the North Patagonian/Somún Cura terrane along a major south-dipping fault.
Publisher
Geological Society of America
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献