Recognition of late Paleoproterozoic gold mineralization in the North China craton: Evidence from multi-mineral U-Pb geochronology and stable isotopes of the Shanggong deposit

Author:

Zhao Shao-Rui12,Li Jian-Wei12,McFarlane Christopher R.M.3,Robinson Paul T.12,Li Zhan-Ke12,Wu Ya-Fei2,Zhao Xin-Fu12,He Chong-Guo2,Kang Xu4,Chen Chang-Yan4

Affiliation:

1. 1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

2. 2School of Earth Resources, China University of Geosciences, Wuhan 430074, China

3. 3Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

4. 4Luoyang Kunyu Mining Ltd., Luoyang 471023, China

Abstract

Abstract The North China craton was stabilized in the late Paleoproterozoic but experienced significant removal of ancient lithospheric keel in the late Mesozoic that resulted in the formation of numerous world-class gold deposits with combined reserves of more than 7000 t of gold. However, it remains uncertain whether the North China craton contains older gold deposits formed during generation and final stabilization of the craton. Here, we show that the Shanggong gold deposit (105 t Au at 5.31 g/t) on the southern margin of the North China craton formed in the late Paleoproterozoic during the collision between the Eastern and Western blocks that led to formation of the Trans–North China orogen and final stabilization of the craton. The Shanggong deposit is hosted in amphibolite-facies rocks of the Neoarchean to early Paleoproterozoic Taihua Group and overlying volcanic rocks of the late Paleoproterozoic Xiong’er Group. Gold mineralization is structurally controlled by NE-striking faults and occurs in four segments: the Liuxiugou, Hugou, Shanggong, and Qiliping segments. The ores consist mainly of quartz-ankeritesulfide stockworks and sulfide disseminations in hydrothermally altered wall rocks. Gold is mostly contained in arsenian pyrite that is variably associated with minor sphalerite, galena, and chalcopyrite. Ore-related alteration assemblages comprise mainly quartz, ankerite, K-feldspar, sericite, and tourmaline. Both the stockworks and mineralized alteration assemblages contain hydrothermal accessory minerals, including monazite, apatite, and rutile. Paragenetic relations and textural data show that these accessory phases precipitated synchronously with gold-bearing sulfides. Laser ablation–inductively coupled plasma–mass spectrometry spot analyses of monazite and apatite from the Shanggong segment yielded reproducible U-Pb dates of 1747 ± 20 Ma (2σ, mean square of weighted deviates [MSWD] 0.46) and 1788 ± 200 Ma (2σ, MSWD = 11.3), respectively. These dates are indistinguishable within errors from an apatite U-Pb date of 1743 ± 79 Ma (2σ, MSWD = 1.6) at the Liuxiugou segment and a rutile U-Pb date of 1804 ± 52 Ma (2σ, MSWD = 0.77) at the Hugou segment. These new dates suggest that the Shanggong deposit formed at ca. 1.80–1.74 Ga, coeval with or immediately after formation of the Trans–North China orogen and final stabilization of the North China craton. Sulfides from the Shanggong gold deposit have δ34S values ranging from −18.5‰ to −6.9‰, whereas the coexisting ankerite has δ13CPDB of −6.81‰ to −1.61‰ and δ18OSMOW of 15.70‰–17.62‰. The stable isotope data are distinctively different from values of the Early Cretaceous gold deposits in the southern North China craton, indicating contrasting hydrothermal systems responsible for these two categories of gold deposits. The results presented here, combined with independent geologic evidence, allow Shanggong to be the first confirmed Paleoproterozoic orogenic gold deposit in the North China craton. Recognition of Paleoproterozoic orogenic gold mineralization provides significant new insights into the gold metallogeny of the well-endowed North China craton and has implications for future gold exploration along the three Paleoproterozoic orogenic belts in this craton.

Publisher

Geological Society of America

Subject

Geology

Reference175 articles.

1. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite;Aleinikoff;Geological Society of America Bulletin,2006

2. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed–associated Cu-Ag deposit, western Montana: Implications for ore genesis;Aleinikoff;Economic Geology,2012

3. Geological significance and geochronology of Paleoproterozoic mafic dykes of Xiaoqinling gold district, southern margin of the North China craton;Bi;Earth Science,2011

4. Gold distribution in As-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern North China craton;Bi;Mineralium Deposita,2011

5. LA-ICP-MS in situ trace element analysis of pyrite from Dongtongyu gold deposit and its metallogenic significance, Xiaoqinling gold district;Bi;Earth Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3