Enhancing Remote Sensing Image Change Detection and Security With Stacked U-Net

Author:

Asim Muhammad1,Aziz Younas2,Ejaz Muhammad2,Abbasi Adeel Ahmed2ORCID,Hussain Anbar2,Danish Aasim2

Affiliation:

1. Prince Sultan University, Saudi Arabia

2. Central South University, China

Abstract

Change detection (CD) and security plays a crucial role in remote sensing applications. The proposed change detection approach focuses on detecting the changes in synthetic aperture radar (SAR) images. The SAR images suffer from speckle noise which affects the classification accuracy. The proposed approach focuses on improving the model's accuracy by removing speckle noise with k-means clustering and an improved threshold approach based on curvelet transform and designing a stacked U-Net model. The stacked U-Net is designed with the help of a 2-dimensional convolutional neural network (2D-CNN). The proposed change detection strategy is evaluated via performing extensive experiments on three SAR datasets. The obtained results reveal that the proposed approach achieves better results than the several state-of-art works in terms of percentage of correct classification (PCC), overall error (OE), and kappa coefficient (KC).

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3