Electricity Production Prediction by Microsoft Azure Machine Learning Service and Python User Blocks

Author:

Pliuhin Vladyslav1,Tsegelnyk Yevgen1ORCID,Sukhonos Maria1,Biletskyi Ihor1,Plankovskyy Sergiy1,Khudiakov Illia1

Affiliation:

1. O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine

Abstract

In this chapter, the forecasting of electricity consumption and production is conducted by analyzing indicators from previous years. The problem is addressed using machine learning within Microsoft Azure Machine Learning Studio. The outcome is an independent service integrated into Excel, enabling consumption forecasting for specified dates. The Excel user interface is developed using Visual Basic for Applications. Python was used to create user blocks for modifying input data pools and forming graphical dependencies, seamlessly integrated into the original modules of Microsoft Azure Machine Learning Studio. An additional aspect of the forecast results involves evaluating the quality of the predicted electricity consumption indicators. The materials used for this chapter were sourced with the support of Ukraine's National Power Company UKRENERGO.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3