Hybrid Approach for Quantifying Company Assets Using Structural Credit Risk Models

Author:

Motarwar Pranav1,Patil Rudra1,Lembhe Ashutosh Sanjay1,Selvamani Radhika1,Bhuvaneswari Anbalagan1ORCID

Affiliation:

1. Vellore Institute of Technology, Chennai, India

Abstract

Global investors have been allocating resources for developing quantitative credit risk models for forecasting credit risk and estimating the cost associated with defaults in order to arrive at the credit derivatives which may handle the risks. In this chapter, the authors propose a hybrid Merton model for measuring credit risk. They estimate market volatility using an iterative annualized historical volatility approach and corporate asset value using the Merton model. For corporate assets, actual default probability and risk neutral probability are correlated. Monte Carlo simulation predictions of the real-time asset price of S&P global-listed Tesla Inc. support the approach. The derived book asset value is 0.44% and the simulated asset value is 0.43%. Model convergence is shown by the minimal difference between the past three iterations. The hybrid strategy to select risk neutral stock value captures volatility variance. Comparative analysis with real-time data confirms the approach's correctness.

Publisher

IGI Global

Reference41 articles.

1. A practical guide for creating monte carlo simulation studies using r.;M. R.Abonazel;International Journal of Mathematics and Computer Science,2018

2. Using Merton model for default prediction: An empirical assessment of selected alternatives

3. Credit risk measurement: Developments over the last 20 years

4. Gmm estimation of a stochastic volatility model: A monte carlo study. Journal of Business amp;T. G.Andersen;Economie & Statistique,1996

5. Credit default swaps (cds) and their role in the credit risk market.;E.Angelini;International Journal of Academic Research in Business & Social Sciences,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3