Predicting the Characteristics of Defects in Wood Structures Using Image Processing and CNN

Author:

Ahmad Afaq1ORCID,Ehtisham ul Hassan Rana2ORCID,Mir Junaid2ORCID,Khan Qasier-uz-Zaman2

Affiliation:

1. The University of Memphis, USA

2. University of Engineering and Technology, Taxila, Pakistan

Abstract

These defects can occur in the form of cracks, pain deterioration, dampness, etc. due to mechanical and weathering effects. Crack identification and categorization must be part of the inspection procedure for civil engineering structures. Convolutional neural networks (CNNs), a sub-type of deep learning (DL), can automatically classify the defective images of wooden structures. In this research, 10 pre-trained models of CNN, including ResNet18, ResNet50, ResNet101, Inception-V3, GoogleNet, ShuffleNet, InceptionResNet-V2, MobileNet-V2, XceptionNet, and NASNet-Mobile are evaluated for classification and prediction of defects in wooden structures. After prediction of class, the algorithm calculated the angle, length, and width of cracks with quantification errors of 0.15%, 1.54%, and 4.2% for first testing image, and 2.3%, 0.99%, and 2% for second testing image.

Publisher

IGI Global

Reference37 articles.

1. Ahmed, C. F., Cheema, A., Qayyum, W., & Ehtisham, R. (2022). Detection of Pavement cracks of UET Taxila using pre-trained model Resnet50 of Detection of Pavement cracks of UET Taxila using pre-trained model Resnet50 of CNN. Academic Press.

2. Algorithm for automatic detection and analysis of cracks in timber beams from LiDAR data

3. Vision-Based Concrete Crack Detection Using a Convolutional Neural Network

4. Crack Detection in Masonry Structures using Convolutional Neural Networks and Support Vector Machines

5. Xception: Deep Learning with Depthwise Separable Convolutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3