Food and Supplement Safety Using Data Science and ML Ensuring Quality and Compliance

Author:

Whig Pawan1ORCID,Dhamodharan Balaji2ORCID,Molli Vijaya Lakshmi Pavani2ORCID,Dutta Pushan Kumar3ORCID

Affiliation:

1. VIPS, India

2. Independent Researcher, USA

3. Amity University, Kolkata, India

Abstract

Data science is playing a crucial role in enhancing food and supplement safety, ensuring that products meet regulatory standards and are safe for consumption. This chapter explores the application of data science techniques in monitoring and ensuring the safety and quality of food and dietary supplements. The authors examine the methodologies used for data collection, analysis, and predictive modeling to detect contaminants, adulteration, and compliance with safety regulations. The chapter also covers the integration of big data sources, such as laboratory results, consumer feedback, and supply chain data, to provide comprehensive safety assessments. Case studies and real-world applications illustrate how data science can preemptively identify potential safety issues and improve regulatory compliance. This chapter aims to provide a detailed understanding of how leveraging data science can enhance food and supplement safety, thereby protecting public health.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3