Deep Learning Advancements in Malaria Diagnosis

Author:

Kumar Saravana1ORCID,R. Saraswathi Meena1ORCID,S. Hirthick1ORCID,B. Surya Devi1ORCID

Affiliation:

1. Thiagarajar College of Engineering, India

Abstract

The authors introduce a robust convolutional neural network (CNN) model for malaria-infected cell identification, achieving over 96.5% test accuracy using PyTorch and GPU acceleration. Data augmentation ensures dataset suitability, while this MosquitoNet CNN architecture effectively extracts hierarchical features through three convolutional and fully linked layers. Training over 20 epochs with cross-entropy loss and Adam optimizer yields high accuracy on independent testing subsets, supported by detailed class-wise metrics and a confusion matrix visualization. This approach integrates deep learning, data augmentation, and advanced visualization for comprehensive malaria detection, promising significant advancements in medical diagnostics. Future work may explore hyperparameter tuning and transfer learning for further enhancement. This research contributes to the field with its robust methodology and high accuracy, offering a promising tool for malaria diagnosis and beyond.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3