Structural and Functional Data Processing in Bio-Computing and Deep Learning

Author:

S. Karthigai Selvi1ORCID

Affiliation:

1. The Gandhigram Rural Institute (Deemed), India

Abstract

The goal of new biocomputing research is to comprehend bio molecules' structures and functions via the lens of biofuturistic technologies. The amount of data generated every day is tremendous, and data bases are growing exponentially. A majority of computational researchers have been using machine learning for the analysis of bio-informatics data sets. This chapter explores the relationship between deep learning algorithms and the fundamental biological concepts of protein structure, phenotypes and genotype, proteins and protein levels, and the similarities and differences between popular deep learning models. This chapter offers a useful outlook for further research into its theory, algorithms, and applications in computational biology and bioinformatics. Understanding the structural aspects of cellular contact networks helps to comprehend the interdependencies, causal chains, and fundamental functional capabilities that exist across the entire network.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3