Efficient Software Cost Estimation Using Artificial Intelligence

Author:

Juneja Sonia1ORCID

Affiliation:

1. IMS Engineering College, India

Abstract

Accurate cost estimation is desired for efficient budget planning and monitoring. Traditional approach for software cost estimation is based on algorithmic models expressing relationship among different project parameters using mathematical expressions. Algorithmic models are parameter-based models and produce the best accuracy when these parameters are well defined and predictable. The fundamental factor governing project cost within algorithmic models is the software size, quantifiable either in lines of code or function points. Analogy based estimation and expert judgment-based estimation falls under the category of non-algorithmic models. Both algorithmic and non-algorithmic models can estimate project cost and effort required but are unable to face challenges arising due to dynamic user requirements, latest technological trends, and impact of cost drivers on estimation process. Different machine learning based approaches like fuzzy modelling, regression models, optimization techniques, and ensemble methods can be used to predict an estimate nearest to the real cost of the project.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3