Application of Artificial Neural Network and Genetic Programming in Civil Engineering

Author:

Samui Pijush1,Choubisa Dhruvan2,Sharda Akash2

Affiliation:

1. National Institute of Technology Patna, India

2. VIT University, India

Abstract

This chapter examines the capability of Genetic Programming (GP) and different Artificial Neural Network (ANN) (Backpropagation [BP] and Generalized Regression Neural Network [GRNN]) models for prediction of air entrainment rate (QA) of triangular sharp-crested weir. The basic principal of GP has been taken from the concept of Genetic Algorithm (GA). Discharge (Q), drop height (h), and angle in triangular sharp-crested weir (?) are considered as inputs of BP, GRNN, and GP. Coefficient of Correlation (R) has been used to assess the performance of developed GP, BP, and GRNN models. For a perfect model, the value of R should be close to one. A sensitivity analysis has been carried out to determine the effect of each input parameter. This chapter presents a comparative study between the developed BP, GRNN, and GP models.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3