Optimizing Production Supply Chain With Markov Jump System for Logistics Collaboration

Author:

Liu Rong1,Vakharia Vinay2ORCID

Affiliation:

1. Guangzhou Maritime University, China

2. Pandit Deendayal Petroleum University, India

Abstract

This study employs a novel Markov jump system model to address complexities and uncertainties in modern logistics management, particularly in supply chain logistics information networks. It introduces dynamic memory to tackle issues in traditional static networks, enabling modeling and control of this intricate system. By assessing decision node importance, a novel strategy optimization method is devised. Through information exchange and decision adjustments among cooperating nodes, the overall decision system performance is enhanced, resulting in a comprehensive logistics information coordination mechanism for production supply chains based on the Markov jump system. The research demonstrates that this approach considers node interactions and information exchange, using dynamic memory to improve system adaptability and robustness, ultimately enhancing overall decision performance and stability. This has practical value for decision support and system optimization in production supply chain logistics information networks, offering fresh insights into Markov jump system control.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3