Forecasting Demand in Supply Chain Using Machine Learning Algorithms

Author:

Ampazis Nicholas1

Affiliation:

1. University of the Aegean, Greece

Abstract

Managing inventory in a multi-level supply chain structure is a difficult task for big retail stores as it is particularly complex to predict demand for the majority of the items. This paper aims to highlight the potential of machine learning approaches as effective forecasting methods for predicting customer demand at the first level of organization of a supply chain where products are presented and sold to customers. For this purpose, we utilize Artificial Neural Networks (ANNs) trained with an effective second order algorithm, and Support Vector Machines (SVMs) for regression. We evaluated the effectiveness of the proposed approach using public data from the Netflix movie rental online DVD store in order to predict the demand for movie rentals during an especially critical for sales season, which is the Christmas holiday season. In our analysis we also integrated data from two other sources of information, namely an aggregator for movie reviews (Rotten Tomatoes), and a movie oriented social network (Flixster). Consequently, the approach presented in this paper combines the integration of data from various sources of information and the power of advanced machine learning algorithms for lowering the uncertainty barrier in forecasting supply chain demand.

Publisher

IGI Global

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3