Strain Field Pattern Recognition for Structural Health Monitoring Applications

Author:

Sierra-Pérez Julián1,Alvarez-Montoya Joham1ORCID

Affiliation:

1. Universidad Pontificia Bolivariana, Colombia

Abstract

Strain field pattern recognition, also known as strain mapping, is a structural health monitoring approach based on strain measurements gathered through a network of sensors (i.e., strain gauges and fiber optic sensors such as FGBs or distributed sensing), data-driven modeling for feature extraction (i.e., PCA, nonlinear PCA, ANNs, etc.), and damage indices and thresholds for decision making (i.e., Q index, T2 scores, and so on). The aim is to study the correlations among strain readouts by means of machine learning techniques rooted in the artificial intelligence field in order to infer some change in the global behavior associated with a damage occurrence. Several case studies of real-world engineering structures both made of metallic and composite materials are presented including a wind turbine blade, a lattice spacecraft structure, a UAV wing section, a UAV aircraft under real flight operation, a concrete structure, and a soil profile prototype.

Publisher

IGI Global

Reference47 articles.

1. In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition.;J.Alvarez-Montoya;Mechanical Systems and Signal Processing,2020

2. Fuzzy unsupervised-learning techniques for diagnosis in a composite UAV wing by using fiber optic sensors.;J.Alvarez-Montoya;Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring, APWSHM 2018,2018

3. Gaussian process modeling for damage detection in composite aerospace structures by using discrete strain measurements.;J.Alvarez-Montoya;Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring, APWSHM 2018,2018

4. Structural Health Monitoring-An Introduction and Definitions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3