Affiliation:
1. Universidad de La Laguna, Spain
Abstract
One of the most studied methods to get approximate solutions in optimization problems are the heuristics methods. Heuristics are usually employed to find good, but not necessarily optima solutions. The primary purpose of the chapter at hand is to provide a survey of the Greedy Randomized Adaptive Search Procedures (GRASP). GRASP is an iterative multi-start metaheuristic for solving complex optimization problems. Each GRASP iteration consists of a construction phase followed by a local search procedure. In this paper, we first describe the basic components of GRASP and the various elements that compose it. We present different variations of the basic GRASP in order to improve its performance. The GRASP has encompassed a wide range of applications, covering different fields because of its robustness and easy to apply.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献